Pace Logo

Volatile Organic Compounds (VOCs) Testing Services

Analytical + Environmental / Volatile Organic Compounds (VOCs)

Volatile Organic Compounds (VOCs) Testing Services

For over three decades, Pace® has provided a variety of testing services to determine the composition of Volatile Organic Compounds (VOCs). Due to their low water solubility and high vapor pressure, special preservation and extraction techniques must be used to minimize losses during analysis and sampling. Our state-of-the-art facilities and instrumentation enable us to streamline sample flow, resulting in high-quality, cost-effective services with quick turnaround times to meet your specific requirements and deadlines. Our VOC testing and analysis services include:

Contact us today.
Pace scientist working in laboratory. What are Volatile Organic Compounds? Volatile Organic Compounds (VOC), Sources of volatile organic compounds, Volatile Organic Compounds testing

What Are Volatile Organic Compounds

VOCs are a group of chemicals with a high vapor pressure and low water solubility. VOCs can move easily through the environment. If improperly discarded, these chemicals can travel through the soil and eventually end up in groundwater.

In addition to contaminating soil and groundwater, VOCs can generate toxic vapors that move through soils, seep into buildings, and degrade indoor air quality, a process called vapor intrusion. Certain VOCs combine with other gases and sunlight to create tropospheric or ground-level ozone, contributing to air pollution and smog.

Sources Of Volatile Organic Compounds

VOCs are all around us. Many VOCs are synthetic chemicals used to manufacture a wide range of common products, including paints, pharmaceuticals, refrigerants, petroleum fuels, hydraulic fluids, paint thinners, and dry-cleaning agents. They may also be used in the manufacturing process as industrial solvents (e.g., trichloroethylene) or fuel oxygenates (e.g., methyl tert-butyl ether, or MTBE) and produced as a by-product of certain processes (e.g., the production of chloroform during water treatment).

Worker inspecting barrels of chemical ready for transport. Blue and Yellow barrels. What are Volatile Organic Compounds? Volatile Organic Compounds (VOC), Sources of volatile organic compounds, Volatile Organic Compounds testing

What Are The Health Impacts Of VOCs?

Various VOCs have the potential to cause harmful effects on human health, particularly when present indoors. The concentration of these compounds can be significantly higher (2-10X) indoors compared to outdoors, especially after construction or renovation projects. Since people spend more time indoors than out, indoor exposure has a greater impact on health.

Health effects of VOC exposure may include:

The Role Of Soils In VOC Contamination

Soils can act as both sources and sinks of VOCs, such as toluene and trichloroethene. These compounds are often the primary pollutants found in contaminated sites, making the quantitative determination of soil VOCs a crucial aspect of both site assessment and environmental restoration processes. Accurate measurement and analysis of soil VOCs is imperative to address and mitigate harmful environmental impacts effectively.

Pace® proprietary ezSoil® method simplifies VOC analysis by converging technology with custom equipment to improve quality while reducing turnaround.

  • Reduced dilutions
  • Fewer containers 
  • Reduced shipping weight
  • Less time in the field
  • Improved accuracy and precision in analysis

“The first day we went from 8AM-630PM…having only 1 vial for VOCs and 2 for TPH, was definitely a big help, otherwise we would have had to consider an extra day for drilling.”

Techniques For VOC Detection​

Pace scientist working in laboratory. The purge and trap procedure involves purging a sample with an inert gas to volatilize the VOCs present in the sample. These volatilized compounds are then trapped onto an adsorbent material. Following the trapping process, the adsorbent material is heated, and the VOCs are released (desorbed) before being analyzed using gas chromatography or gas chromatography-mass spectrometry (GC-MS). The purge and trap method is designed to manage water vapor while simultaneously achieving low detection limits in the parts-per-billion range.
Gas Chromatography-flame Ionization Detection (GC-FID)

One of the most frequently utilized techniques for separating and analyzing mixtures consisting of volatile components is Gas Chromatography-Flame Ionization Detection (GC-FID). This method is highly effective in detecting and quantifying VOCs.

Electron Capture Detectors (ECD)

ECDs are commonly used in environmental testing to detect PCBs, organochlorine pesticides, herbicides, and other halogenated hydrocarbons. ECDs are up to 1000 times more sensitive than Flame Ionization Detectors and were the first detectors to measure components at parts-per-billion (ppb) and parts-per-trillion (ppt) levels.

Gas Chromatography– Mass Spectrometry (GC–MS)

GC–MS is an analytical technique that combines gas chromatography and mass spectrometry to identify different substances within a test sample. GC-MS can achieve high sensitivity, selectivity, accuracy, and reproducibility for the analysis of VOCs.

Purge And Trap

The purge and trap procedure involves purging a sample with an inert gas to volatilize the VOCs present in the sample. These volatilized compounds are then trapped onto an adsorbent material. Following the trapping process, the adsorbent material is heated, and the VOCs are released (desorbed) before being analyzed using gas chromatography or gas chromatography-mass spectrometry (GC-MS). The purge and trap method is designed to manage water vapor while simultaneously achieving low detection limits in the parts-per-billion range.

How Are Volatile Organics Regulated?

VOCs are covered by both state and federal regulations. Under the National Ambient Air Quality Standards, the U.S. Environmental Protection Agency (EPA) has defined VOCs as any substance that participates in atmospheric photochemical reactions. Simply stated, they are substances that react in the atmosphere, producing ozone, which contributes to the formation of smog. Industrial solvents are the primary source of VOC emissions, which are closely monitored to ensure compliance.

Safe Drinking Water
In 1974, the SDWA was created to give the EPA the authority to develop National Primary Drinking Water Regulations (NPDWR). The EPA has established drinking water standards for 23 VOC compounds, eight of which are classified as human carcinogens or possibly carcinogenic. When monitoring reveals VOC levels greater than the maximum contaminant level (MCL) established by the EPA or a stricter limit imposed by individual states, water systems are required to alert customers and implement measures to decrease the presence of these contaminants.
Resource Conservation And Recovery ACT (RCRA)

Many industries use VOCs as solvents and chemical intermediates. When VOCs leak or are a component of industrial waste, these organic contaminants can pollute soil and sediments. Because many VOCs have negative environmental effects and soil remediation can be expensive, it is crucial to accurately measure the extent of hazardous waste contamination to make informed decisions about cleanup efforts.

Enacted in 1976, RCRA governs the disposal of solid and hazardous waste. According to RCRA guidelines, waste is considered toxic if it contains any of the 40 hazardous constituents in concentrations equal to or greater than certain levels. These constituents include 10 VOCs.

Comprehensive Environmental Response, Compensation And Liability ACT (CERCLA OR SUPERFUND)

CERCLA, commonly known as Superfund, gives the EPA broad authority to respond directly to releases or threatened releases of hazardous substances, including VOCs, that may endanger public health or the environment. Once a substance is designated hazardous under CERCLA, facilities will be required to report on releases that meet or exceed the reportable quantity assigned to these substances.

OSHA VOC Regulations

The Occupational Safety and Health Administration (OSHA) regulates formaldehyde, a specific VOC, as a carcinogen. OSHA has adopted a Permissible Exposure Level (PEL) of .75 ppm, and an action level of 0.5 ppm.

National VOC Emission Standards For Consumer And Commercial Products

The EPA regulates VOCs at the federal level in 40 CFR 59, the National Volatile Organic Compound Emission Standards for Consumer and Commercial Products. VOC controls for products are typically based on the application of products, such as aerosol coatings, architectural coatings, automobile refinish coatings, etc.

State VOC Regulations

States must adhere to Reasonably Available Control Technology, or RACT, which sets minimum standards for emissions control based on technical and economic factors.

While federal VOC limits are designed to maintain nationwide air quality for environmental and human health reasons, the Clean Air Act requires states to also take responsibility for maintaining air quality. Some states have implemented State Implementation Plans (SIPs) to address air pollution. Other states, such as Pennsylvania and California, have implemented even stricter regulations than the EPA requires on VOC limits. Additionally, some states have VOC regulations that vary from county to county or region to region.

Environmental Protection Agency (DPA) building Washington D.C. USA. What are Volatile Organic Compounds? Volatile Organic Compounds (VOC), Sources of volatile organic compounds, Volatile Organic Compounds testing

Who We Serve

Pace® provides VOC testing for a wide variety of industries and business concerns. Here are some common types of clients we help monitor potential contamination, ensure remediation efficacy, and comply with environmental regulations.
1
Environmental Consultants And Engineers
2
Landfill Management Companies
3
Oil And Gas
4
Chemical Manufacturing
5
Aerospace
6
Dry Cleaners
Environmental Consultants And Engineers

VOC analysis is used to assess the extent of environmental contamination in a variety of matrices. Pace® offers several VOC testing methods, including ezSoil®, to support environmental and engineering projects. Our state-of-the-art facilities and instrumentation allow us to streamline sample flow, which means high-quality, cost-effective services with a quick turnaround.

Landfill Management Companies

VOCs from landfills can be emitted directly into the atmosphere or spread to surrounding areas in leachate plumes from open solid waste dumpsites. Pace® provides leachate VOC testing services for municipal, industrial, and private landfill operators.

Oil And Gas

The oil and natural gas industry includes a wide range of operations and equipment, from wells to natural gas gathering lines, processing facilities, storage tanks, and transmission and distribution pipelines. It is also one of the largest industrial sources of VOC emissions that contribute to the formation of ground-level ozone (smog).

Chemical Manufacturing

VOCs and other Hazardous Air Pollutant (HAP) emissions can be produced during the chemical manufacturing process. These pollutants may be released into the environment through process vents, storage tank emissions or leaks, and unintentional (fugitive) releases.

Aerospace

The Clean Air Act (CAA) requires the EPA Administrator to issue Control Techniques Guidelines (CTG) for the control of VOC emissions from coatings and solvents used in the aerospace industry. Pace® offers a variety of VOC testing methods to support the CAA.

Dry Cleaners

For years, a variety of dry-cleaning agents have been used, with the VOC tetrachloroethylene (PCE) being the most common. PCE can migrate through soil and accumulate in deeper zones, and in some cases, leach into groundwater. Pace® provides testing to determine the composition of VOCs to support regulatory requirements for dry cleaners.

Additional Resources